Saturday, Jul 11, 2020 | Last Update : 10:46 PM IST

109th Day Of Lockdown

Maharashtra2384611326259893 Tamil Nadu134226859151898 Delhi110921876923334 Gujarat40155281832023 Uttar Pradesh3509222689913 Karnataka3341813838545 Telangana3222419205339 Andhra Pradesh2723514393309 West Bengal2710917348880 Rajasthan2334417634499 Haryana2038114912297 Madhya Pradesh1720112679644 Assam15537984936 Bihar1503910991118 Odisha11956797273 Jammu and Kashmir92615567149 Punjab71404945183 Kerala6535370828 Chhatisgarh3526283514 Uttarakhand3305267246 Jharkhand3192217022 Goa203912078 Tripura177313241 Manipur14357930 Puducherry120061916 Himachal Pradesh110182510 Nagaland6733030 Chandigarh5234037 Arunachal Pradesh2871092 Mizoram2031430 Sikkim134710 Meghalaya113451
  Life   Health  15 Aug 2018  Here's how stress hormone prevents Leukemia

Here's how stress hormone prevents Leukemia

ANI
Published : Aug 15, 2018, 6:34 pm IST
Updated : Aug 15, 2018, 6:34 pm IST

This explains why the immune system fails to prevent leukemia from taking hold.

Cancer cells evade the anti-cancer activity of the human immune system by employing the human hormone cortisol.  (Photo: Pixabay)
 Cancer cells evade the anti-cancer activity of the human immune system by employing the human hormone cortisol. (Photo: Pixabay)

A human stress hormone called cortisol has been identified by scientists as a key factor behind when and why the immune system fails to prevent leukemia from taking hold.

The team led by Dr. Vadim Sumbayev, of the University's Medway School of Pharmacy, found for the first time that blood or bone marrow cancer - acute myeloid leukemia (AML) - cells evade the anti-cancer activity of the human immune system by employing the human hormone cortisol.

The study of the causes of AML - the most severe blood or bone marrow cancer, demonstrated that AML cells employ a unique pathway for the disease to progress, using functional systems of the human body to both support their survival and also reduce the anticancer activities of immune cells.

They do this by using cortisol to force the release of a protein, latrophilin 1. 

This, in turn, causes the secretion of another protein, galectin-9, which suppresses the body's natural anti-cancer immune mechanism.

Dr. Sumbayev's team, working with researchers from two German universities and the UK's Diamond Light Source facility, found that although healthy human white blood cells are not affected by cortisol, they become capable of releasing latrophilin 1 when the malignant transformation takes place.

Malignant AML cells then use cortisol to increase the release of latrophilin 1 so that they can use it to avoid the immune system.

Dr. Sumbayev said, "For the first time, we can identify a possible future pathway to develop an effective new therapy using the body's natural immune mechanisms. We have discovered a new fundamental biochemical mechanism within the human body that allows AML cells to employ physiological systems to survive and escape immune attack."

The study concluded that galectin-9, as well as a natural binding partner of latrophilin 1 - known as FLRT3 - which are both present in human blood plasma, are the most promising targets for future anti-AML immune therapy.

The full findings are present in the journal- Cellular and Molecular Immunology.

Tags: stress hormone, cortisol, cancer, leukemia