Tuesday, Aug 11, 2020 | Last Update : 09:49 PM IST

140th Day Of Lockdown

Maharashtra52451335842118050 Tamil Nadu3028752446755041 Andhra Pradesh2355251456362116 Karnataka182354991263312 Delhi1461341316574131 Uttar Pradesh126722767212120 West Bengal98459671202059 Bihar8274154139450 Telangana8075157586637 Gujarat71064542382652 Assam5883842326145 Rajasthan5249738235789 Odisha4592731785321 Haryana4163534781483 Madhya Pradesh3902529020996 Kerala3433121832109 Jammu and Kashmir2489717003472 Punjab2390315319586 Jharkhand185168998177 Chhatisgarh12148880996 Uttarakhand96326134125 Goa871259575 Tripura6161417641 Puducherry5382320187 Manipur3752204411 Himachal Pradesh3371218114 Nagaland30119738 Arunachal Pradesh223115923 Chandigarh1595100425 Meghalaya11154986 Sikkim9105101 Mizoram6203230
  Technology   In Other news  12 Mar 2017  Why humans can recognise faces and read?

Why humans can recognise faces and read?

PTI
Published : Mar 12, 2017, 10:05 am IST
Updated : Mar 12, 2017, 10:06 am IST

The findings decipher the mechanism that lets humans reading this text, recognising faces, enjoying colours, say the scientists.

(Representational image)
 (Representational image)

A team led by Kolkata-born scientists has found that a special sweet spot in the eye called 'fovea' plays a crucial role in humans being able to to focus on computer screens and also read, an ability which is unique to Homo sapiens.

The findings decipher the mechanism that lets humans reading this text, recognising faces, enjoying colours, say the scientists.

 

Raunak Sinha and Mrinalini Hoon describe themselves as a 'scientist couple' who push the frontiers of neuroscience to better understand vision.

Sinha says this "recent breakthrough in understanding how the most important aspects of our vision works at a cellular level. This work illustrates the physiological basis of how our central vision, mediated by the region in the eye called fovea, works at a cellular level and how it differs in its operation from the region that mediates our peripheral vision".

Vision scientists have uncovered some of the reasons behind the unusual perceptual properties of the eye's fovea.

Among mammals, only humans and other primates have this dimple-like structure in their retinas. Owls, some other predatory birds, and some reptiles have a similar structure. The fovea is responsible for our visual experiences that are rich in colourful spatial detail.

 

Figuring out how the fovea functions is essential to the search for strategies to correct central vision loss, including efforts to design visual prosthetics.

"Diseases such as macular degeneration are much more debilitating than deficits in peripheral eyesight because of the importance of the fovea to everyday vision," says Sinha of the Department of Physiology and Biophysics at the University of Washington's, School of Medicine.

The fovea is a specialised region that dominates our visual perception, he explains.

It provides more than half of the input from the eyes to the visual cortex of the brain.

"When you look at a scene an arm's length away," he says, "the fovea subtends a field only about the size of your thumbnail. Our eyes undergo rapid movements to direct the fovea to various parts of the scene."

 

The absence of a fovea in most mammals, he says, and technical challenges associated with recording from the primate fovea, led to a paucity of information about how the fovea operates at the level of cellular circuits.

Using advanced techniques, Sinha helped lead a study that revealed that the computational architecture and basic visual processing of the fovea are distinct from other regions of the retina.

The results help explain why central and peripheral vision have different qualities, he says. Located near the optic nerve, the fovea is at its best for fine tasks like reading. Compared to the peripheral retina, however, the fovea is less able to process rapidly changing visual signals.

 

This low sensitivity is what makes us see motion in flipbooks and movies. It's also what prevents us from seeing flicker when a computer or TV screen refreshes, unless we glance at the screen (especially the old-fashioned CRT monitors) from the corner of our eye, Sinha explains.

Tags: school of medicine, flipbooks, kolkata, humans, tv, smartphones