Spinal fractures can be healed with new magnetic surgical cement

Nanoparticles bound to various drugs have been used to target drugs to specific locations or types of cells in the body.

Update: 2018-07-29 14:13 GMT
This is a very promising technology as it has the potential to become a surgical option for patients with primary spinal column tumours (Photo: Pixabay)

Washington: Scientists have developed a magnetised surgical cement that can be used to heal spinal fractures, and deliver drugs to hard-to-reach areas.

Patients with spinal fractures caused by tumours or osteoporosis usually undergo a procedure called kyphoplasty, where the fracture is filled with surgical cement.

While kyphoplasty can stabilise the bone, cancer patients are still often left with spinal column tumours that are very hard to reach with conventional chemotherapy, which has to cross the blood-brain barrier when delivered intravenously.

Researchers at the University of Illinois at Chicago (UIC) in the US found that by adding magnetic particles to surgical cement used to heal spinal fractures, they could guide magnetic nanoparticles directly to lesions near the fractures.

Nanoparticles bound to various drugs have been used to target drugs to specific locations or types of cells in the body.

Most commonly, this is achieved by binding a minute amount of drug to the nanoparticle, which is designed to also bind to a specific type of cell, such as a cancer cell.

"By modifying the kyphoplasty bone cement, we can both stabilise the spinal column and provide a targeted drug delivery system. This is a very promising technology as it has the potential to become a surgical option for patients with primary spinal column tumours or tumours that metastasise to the spinal column," said Steven Denyer, co-lead author of the study published in the journal PLOS ONE.

Using a pig model to study the magnetically-guided drug delivery system, scientists were successfully able to steer magnetic nanoparticles to the magnetic cement in the animal's spinal vertebrae.

In future studies to test the efficacy of this technique on treating spinal column tumours, the magnetic nanoparticles would be bound to tiny amounts of chemotherapy drugs.

"Our study provides an in vivo proof-of-concept that this novel drug delivery system can help treat underlying causes of spinal fractures in addition to providing structural support," said Abhiraj Bhimani, a student at UIC.

Tags:    

Similar News